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We study the phase diagram for the Ising Model on a Cayley tree with com- 
peting nearest-neighbor interactions J1 and next-nearest-neighbor interactions 
J2 and 33 in the presence of an external magnetic field. To perform this study, an 
iterative scheme similar to that appearing in real space renormalization group 
frameworks is established; it recovers, as particular cases, previous works by 
Vannimenus and by Inawashiro etal. At vanishing temperature, the phase 
diagram is fully determined, for all values and signs of J2/J 1 and J3/J2; in par- 
ticular, we verify that values ofJ3 /J  2 high enough favor the paramagnetic phase. 
At finite temperatures, several interesting features (evolution of reentrances, 
separation of the modulated region into two disconnected pieces, etc.) are 
exhibited for typical values of J~/Jt and J3/J2. 
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1. I N T R O D U C T I O N  

The Ising model on a Cayley tree with competing interactions has recently 
been studied extensively because of the appearance of nontrivial magnetic 
orderings. The Cayley tree is not a realistic lattice; however, its amazing 
topology makes the e x a c t  calculation of various quantities possible. It is 
believed that several among its interesting thermal properties could persist 
for regular lattices, for which the exact calculation is so far untractable. 
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Furthermore it is equivalent to the standard Bethe-Peierls theory. (1) In 
particular, considering a system with ferromagnetic nearest-neighbor (nn) 
interactions and competing (antiferromagnetic) next-nearest-neighbor 
(nnn) interactions on a Cayley tree, Vannimenus (2) was able to find new 
modulated phases, in addition to the expected paramagnetic (P) and 
ferromagnetic (F) ones. These new phases consist in a period-four one 
(denoted (2 )  from now on), and in a complex set of higher-order com- 
mensurate or incommensurate modulated phases (denoted M from now 
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Fig. 1. (a) Three successive generations of a Cayley tree (solid line: nearest-neighbor interac- 
tions; dot-dashed line: next-nearest-neighbor interactions; dashed line: interbranch interac- 
tions); (b) schematic diagram to illustrate the summation used in Eq. (20). 



Phase Diagram of Ising Model 579 

on). The detailed analysis of the complex M phase has revealed the 
existence of a "devil's staircase" (similar facts are observed in other 
models(3-v)). More recently, Inawash i roe taL  (8'9) investigated the same 
system on a Cayley tree but, unlike Vannimenus, they included in the 
model same-generation next-nearest-neighbor interactions; this situation 
corresponds to the usual Bethe-Peierls approximation on the hexagonal 
lattice. Using an iteration scheme different from that introduced by Van- 
nimenus, they found similar features. Their detailed analysis of the M phase 
shows that the local magnetization presents chaotic oscillatory glasslike 
behavior. 

The aim of this paper is to extend in several senses these previous 
results. First, the presence of an external magnetic field is assumed. Second, 
our model consists of a spin-l/2 Ising model on a Cayley tree of branching 
ratio 2 (like Inawashiro et a/.(9)), where all three interactions are charac- 
terized by general strengths (J1, J2, J3~0);  see Fig. la. This model 
recovers that of Vannimenus for J3 = 0, and that of Inawashiro et al. for 
J3 : J 2 .  This choice is not a mere mathematical complication of the 
previous results since, as we shall see later on, a significantly richer phase 
diagram is obtained. In spite of its simplicity, the branching ratio 2 Cayley 
tree, already presents several nontrivial effects. These effects should not be 
very different in higher (but finite) branching ratio trees, excepting for the 
possible appearance, at f inite temperatures, of Lifshitz points (see Ref. 6). 

The outline of this paper is as follows: in Section 2 we set up the basic 
equations of our model and we find the recurrence relations. Section 3 is 
devoted to the analysis of the phase diagram. Finally, the conclusions are 
presented in Section 4. 

2. B A S I C  E Q U A T I O N S  

We consider a Cayley tree with branching ratio 2 (see Fig. la). Let us 
introduce q =_ J3/J2 and p -  - J 2 / J l ;  obviously for q = 0 we recover Van- 
nimenus model, while q = 1 is the case focused on by Inawashiro et aL In 
order to set up our basic equations in a recurrence scheme relating the par- 
tition function of an N-generation tree to the partition functions of its sub- 
systems, we should take into account the partial partition functions for all 
the possible configurations of the spins in two successive generations. If we 
identify (following along the lines of Vannimenus) ZN(- -  + -- ) as the par- 
tition function of a branch of an N-generation tree where the spin in the 
last generation is up and the two spins in the preceding one are down, 
there are only six different ZN to consider. We define for convenience the 
following variables [see Eq.(1) of Ref. 2]: z l = - Z x ( + + + ) ,  z 2 -  
ZN(-I-Jf---), Z3~--ZN(--JU--), Z4~--ZN(J----}-), ZS==_ZN(DU----), Z6~ 
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Z N (  --  --  --  ), and u i -- ~ (i = 1, 2,..., 6). The effect of the J3 interaction is 
appropriately included by a factor exp( _+ J3/kB T) into each Z~ as obtained 
in Ref. 2; the plus (minus) sign corresponds to the same (opposed) orien- 
tation of the two spins of the preceding generation. It is straightforward to 
establish the following recursive relations: 

u 'l = a[ b%u 2 + (2/c) ul u3 + ( c /b  2) u~ ] 

u'3 = a -  l[b2cu] + (2/c) u4u6 + ( c/b 2) u 2 ] 

U~4 = a - l [  (c/b2) u~ + (2/c) ut u3 + b2cu~] 

u'6 = a[ (c/b 2) u] + (2/c) u4u6 + b2cu~J 

(1) 

(2) 

(3) 

(4) 

where the prime denotes recurrence image and where the equations for u 2 
and u5 have been omitted as they satisfy u22 = u~u3 and u~= b/4/d6, with 

a = exp(J1/kB T) (5) 

b - e x p ( J S k  ~ T) (6) 

c - exp(J3/k B T) (7) 

We note that, in the paramagnetic phase (high symmetry phase), u~ = I'/6 
and u3 = u4. For discussing the phase diagram, the following choice of 
reduced variables is convenient: 

x - (u3 + u4)/(ul + u6) 

y l  =- ( u l  - u , ) l ( u l  + u6) 

Y2 ~- (U3 --  U4) / (Ul  "]- b/6) 

Equations (1)-(4) yield 

x ' = ( a Z D ) - l [ b 4 ( x 2 +  y~)W2(b/c)Z(X+ y l Y 2 ) + ( l  + y2)] (8) 

Y'I = 2D- 1 [b4yl + (b/c)2(y2 + Yl x)  + yzXJ (9) 

y~= -2(aZD) ~[b4y2x + (b/c)Z(y2 + y l x )  + y l ]  (10) 

where 

D - b4(1 + y~) + 2(b/c)Z(x + y~ Y2) + ( x2 + y2) (11) 

These expressions generalize those obtained in [-2] which are recovered for 
c =  1. Furthermore for b = c we recover the equations of Appendix B of 
Ref. 9. 
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In order to find the stability limit surface (in the kB T/J1, p, q space for 
instance) of the paramagnetic phase, we need to linearize Eqs. (8)-(10) 
around the fixed point (x*, 0, 0), since y~ and Y2 are parameters that vanish 
in this region (since ul = u 6 and u3 = u4). As x' does not depend on Yl and 
Y2 in first order, the nontrivial part of the linearization is expressed in 
terms of the Jacobian 

where 

with 

and 

yl/ ~4)\y2/ 

21 = 2[b 4 + (b/c) 2 x*] /D1 

22 = 2[(b/c)  2 + x*  ]/D1 

23 = -2x*[1  + (b/c) 2 x*] /D2  

24 = -2x*  [-b4x * + (b/c)2]/D2 

(13) 

(14) 

(15) 

(16) 

DI =-- b 4 + 2(b/c) 2 x*  + x .2 

D 2 ~ 1 + 2(b/c) 2 x* + b4x .2 

(17) 

(18) 

b4x .2 q'- 2(b/c) 2 x*  + 1 
x* = (19) 

a2[b 4 + 2(b/c) 2 x*  + x .2] 

Two cases should be examined now, according to whether the eigen- 
values of (12) are real or complex: 

(a) The Para-ferro (Para-antiferro) Transition. When the eigen- 
values of (12) are real, the transition line will be characterized by the 
criterion that the largest (in absolute value), eigenvalue ()~max) should be 
equal to unity. This determines the stability limit surface we were looking 
for. If the para-ferro (para-antiferro if J1 < 0) phase transition is a second- 
order one (and it is, as we shall see later on), this surface coincides with the 
critical surface. 

(b)  The P a r o - M o d u l a t e d  Transition. When the eigenvalues of (12) 
are complex conjugate, the fixed point is approached in an oscillatory way 
and the stability limit (which coincides with the critical limit for second- 
order phase transitions) is achieved if we consider the modulus of 2 equal 
to unity. This requirement completely determines the (critical) surface we 
are looking for. 
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If an external magnetic field H (B-= H/ke T is a convenient reduced 
variable) is applied on the system, the corresponding recursive relations 
can be quite straightforwardly obtained following along the lines of 
Inawashiro et aL (9) The iterative scheme can be set up by summing suc- 
cessively over spins as can be seen in Fig. lb. We obtain 

exp[Kl(ol 00A + 0~ 00B) + K2(00200A + 00"2008) 
r • 

+ K300 A00B + X(00 A + 00~) ] = C exp( W00a002 + U002+ V001) (20) 

where K i ~ J i / k ~ T  ( i=  1, 2, 3) and 

U =-U(X ,K1)=4  l l n [ o ) ( 1 , 1 ) o ) ( 1 , - 1 ) / o ) ( - 1 , 1 ) ( o ( - 1 , - 1 ) ]  (21) 

V---V(X, K 1 ) = 4 - 1 1 n [ o ) ( 1 , 1 ) o ) ( - 1 , 1 ) / o ) ( 1 , - 1 ) o ) ( - 1 , - 1 ) ]  (22) 

W -= W(X, K1)=4  -1 ln[o)(1, 1), co(-1, -1)/o)(1, - 1 ) c o ( - 1 ,  1)] (23) 

C=-C(X, K1)= [o)(1, 1) o)(1, - 1 ) o ) ( - 1 ,  1) o ) ( -  1, - 1 ) ]  1/4 (24) 

with 

co(a, 00') = 2e K3 cosh(2X + 2K200 + 2K, 00') + 2e K3 (25) 

The recursive relations are given by 

X ( r ) = B +  2U(X(r 2)K~r 2))+ V(X(,.-~), K~,.-1)) (26) 

and 

K~r) = K1 + W(x(r 1), K~r 1)) (27) 

for r = 2, 3,... The initial conditions are 

X (~ = K~ ~ = 0 (28) 

X (1) = Bs (29) 

K~ 1) = KI (30) 

where we have introduced the reduced applied field B s associated with the 
outer most shell. Bs need not to be equal to the "bulk" reduced field B, and 
is introduced for numerical convenience. Indeed, the B = 0 phase diagram 
can only be determined numerically if the up-down symmetry is broken, 
which is achieved by taking a small value for Bs, for example, Bs = 0.01. As 
a matter of fact, for most regions of the phase diagram, the result does not 
depend on Bs, which can be chosen to be any arbitrary nonvanishing 
value; however, regions of the phase diagram might exist for which suf- 
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ficiently high values of B s could drive the system to different (high-field) 
phases (see Refs. 10 and ! 1 for a discussion of this point for the particular 
case J2=J3=0) .  Equations (21)-(27) recover, for Jz=J3  and B = B  s, 
those appearing in Ref. 9, furthermore, they lead, for B = 0, and through 
appropriate variable transformations, to Eqs. (8)-(10) of the present paper. 

3. T H E  P H A S E  D I A G R A M  

The recursion relations derived in Section 2 [-Eqs. (21)-(30)] provide 
us the (numerically) exact phase diagram (in the k~T/J~, p, q, H/J1 space, 
for instance) of the problem. Each phase (P, F, M, (2) ,  AF), is charac- 
terized by a particular attractor in the (X (r), K~ r)) space (note, in particular, 
that X (~) plays the role of an effective field, thus characterizing the rth shell 
mean magnetization) and the phase diagram is obtained by following the 
evolution and detecting the qualitative changements of these attractors. 
These changements can be either continuous or abrupt, respectively, 
characterizing second- or first-order phase transitions. A few typical attrac- 
tors are presented in Fig. 2. In Figs. 3, 4, and 5 we have shown typical 
critical lines of the vanishing magnetic field phase diagram. It is important 
to note, first of all, that there is an isomorphism between the system 
characterized by (J~, J2, J3) and that characterized by ( - J~ ,  J2, J3), the 
main difference being the fact that the ferromagnetic phase corresponds to 
an antiferromagnetic one. Also the period four modulated phase ( (2 ) )  is 
slightly altered through the isomorphism, changing the order T,LT,~ by the 
order T~J,,L, where the arrows denote four successive shell magnetizations 
(the different sizes of the arrows refer to different mean values). For the 
remainder of our analysis we will focus our attention solely on the 
semiplane ks  Tc/J~ >1 0 since, owing to the isomorphism, we can extend our 
remarks to the other semiplane k ~ Te/J I < O. 

The T= 0 critical lines of the Jl  > 0 phase diagram are particularly 
simple as theY are segments of straight lines (see Fig. 6). The F - ( 2 )  critical 
line lies along lip = 3, the F - M  line along 

1/p= 3 + q (31) 

the M - ( 2 )  line along 

f 3 - q  
1/p 

~x/~(q - 1) 

and the P - M  line along 

if p ~< (2 + x//2)/4 

if p ~> (2 + x/~)/4 

l i p = q - -  1 

(32) 

(33) 

822/40/3-4-14 
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Fig. 2. Examples of attractors in the X K  space IX and K determined by Eqs. (26) and (27)] 
for vanishing external field and selected values of q = ,]3/J2, p = - J2 / J1  and kBT/J  1. They 
correspond to the following phases: (a) paramagnetic, (b) ferromagnetic, (c) an- 
tiferromagnetic, (d) (2)  modulated, (e)-(h)more general modulated phases. 
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Fig. 3. Phase diagram of the Cayley tree with competing interactions, showing the 
ferromagnetic (F), antiferromagnetic (AF), paramagnetic (P), modulated (M), and modulated 
(2)  phases for q =- J 3 / J 2  = --1. 

At low temperatures and for q < 1, the M phase presents a small reen- 
trance into the paramagnetic phase, as illustrated in Fig. 7. This reentrance 
becomes more pronounced when q approaches zero from positive values, 
and decreases again for more and more negative values of q. Another 
interesting feature is the fact that, for q > 1, the Jl > 0 P - M  critical tem- 
perature attains a maximum as a function o f p  (see Fig. 5), in contrast with 
the q ~< 1 cases, where it monotonously increases. Furthermore the M phase 
appears, for q--3/2,  in two disconnected pieces (denoted M1 and M2; see 
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Fig. 4. The same as Fig. 3 but  with q = 0.5. 

Fig. 5), the Ms and M2 parts of it being, respectively, associated with 
attractors of the types indicated in Figs. 2h and 2f. The M~- (2 )  critical 
line is a second-order one, which is (possibly) not the case for the M2-{2)  
critical line, where the attractor changes suddenly (it is of the type Fig. 2d 
for the ( 2 )  region, and of the type of Fig. 2f for the M2 region). For 
q > 3/2 and q < 3/2, the P - ( 2  ) - Ms - M2 multicritical point disappears 
and the two regions Ms and M2 become connected through a narrow path 
(see Fig. 8). An interesting "metastability" phenomenon occurs along this 
path: there is an intermediate region (shaded in Fig. 8) where during a long 
transient the attractor seems to be that of region M 2 (i.e., of the type of 
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Fig. 5. The same as Fig. 3 but with q = 1.5 (the M phase splits into two pieces, denoted Mt 
and M2). 

Fig. 2f), but, after many iterations, numerical fluctuations drive the system 
to its final attractor, namely, that of region M1 (i.e., of the type of Fig. 2h). 
The change of attractor is abrupt and irreversible. This phenomenon means 
that there is a quite large "surface" region of the Cayley tree where the 
spin-glass-like ("chaotic" in some sense) magnetic order is quite different 
from the "bulk" order (which also is spin-glass-like). 

If a uniform external magnetic field H is considered, the entire phase 
diagram will evoluate, excepting of course the F - P  critical surface which 
disappears, the magnetic field H being thermodynamically conjugated of 
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Fig. 6. T = 0  phase diagram. 

the ferromagnetic order parameter (spontaneous magnetization). For the 
discussion of some aspects of the J2 = J~ = 0 particular case, see Refs. 12 
and 14. The influence of nonvanishing J2 and J~ coupling constants has 
been illustrated in Fig. 9. 

4. C O N C L U S I O N S  

In this paper we have extended in several senses previous works by 
Vannimenus t2~ and by Inawashiro e t  al. (8'9~ on the Ising model on a Cayley 
tree with competing interactions. As before, the paramagnetic (P), 
ferromagnetic (F), period four modulated ( ( 2 ) ) ,  and more complex 
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modulated (M) phases are observed, and, through the numerical obser- 
vation of the various attractors (corresponding to the relevant recurrences), 
the phase diagram has been determined. Furthermore, we exhibit the 
vanishing magnetic field ( H =  0) (J~, J2, J3) ~ ( - J 1 ,  J2, J3) isomorphism 
and show how it is destroyed for H ~ 0  (see Fig. 9). Other new features that 
have been established are the following: 

(i) The complete T= H =  0 phase diagram is made, in the (l/p, q) 
space (p - - J z / J 1 ,  q =- J 3 / J 2 ) ,  of pieces of straight lines, and their analytic 
equations have been established. 

(ii) The q-evolution of the small reentrances, in the (p, ksT/J1) 
space, of the M phase into the P phase has been discussed, and it has been 
verified that the maximal reentrance occurs in the neighborhood of q = 0. 

(iii) The H=0, Jl > 0  P - M  critical temperature monotonously 
increases with p for q ~< 1, but, for q >  1, present a maximum and then 
vanishes for p high enough. 

(iv) The H = 0  M - ( 2 )  critical temperature also monotonously 
increases with p for q ~< 1 but, for q > 1, presents a maximum and then 
vanishes for p high enough. 

(v) For q=3/2,  the H = 0  M - ( 2 )  critical line touches in a 
(multicritical) point the M-P critical line, in such a way that the ( 2 )  
phase separates the M phase into two disconnected pieces (noted MI and 
M2); the attractors associated with each piece are quite different in shape, 
and naturally they must correspond to quite different "devil's staircases." 

(vi) All critical frontiers that have been observed are continuous 
ones (no latent heat), excepting the M 2 - ( 2 )  and M1-M 2 critical lines in 
the neighborhood of q=3/2;  in this case interesting "metastability" 
phenomena have been exhibited, which essentially means that the "surface" 
shells (a quite large number of then) of the Cayley tree present a 
modulated order quite different from that of the "bulk." 

The detailed study of the q-evolution (including the metastability 
effects) of the devil's staircases associated with the modulated phase(s) of 
the present competing interactions Cayley tree would be very welcome; it 
could reveal interesting aspects that could exist even for regular lattices, 
and consequently be of relevance for real spin-glasses. Although the Cayley 
tree is not a realistic model, we hope that the results obtained in the 
present work can simulate the behaviour of more realistic systems. As poin- 
ted by Vannimenus, a Cayley tree is a counterpart of the ANNNI model, 
which is used to provide an approximate description of some materials, 
such as CeSb and ferroelectric NaNO2. Other possible realizations of a 
system with properties similar to those of the Cayley tree are those where 
there is a gradient in the density of magnetic atoms, as suggested by 
Moraal.(~o) 
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